Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3(LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3(LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity.more » « less
-
Abstract Addressing sustainable energy storage remains crucial for transitioning to renewable sources. While Li‐ion batteries have made significant contributions, enhancing their capacity through alternative materials remains a key challenge. Micro‐sized silicon is a promising anode material due to its tenfold higher theoretical capacity compared to conventional graphite. However, its substantial volumetric expansion during cycling impedes practical application due to mechanical failure and rapid capacity fading. A novel approach is proposed to mitigate this issue by incorporating trace amounts of aluminum into the micro‐sized silicon electrode using ball milling. Density functional theory (DFT) is employed to establish a theoretical framework elucidating how grain boundary sliding, a key mechanism involved in preventing mechanical failure is facilitated by the presence of trace aluminum at grain boundaries. This, in turn, reduces stress accumulation within the material, reducing the likelihood of failure. To validate the theoretical predictions, capacity retention experiments are conducted on undoped and Al‐doped micro‐sized silicon samples. The results demonstrate significantly reduced capacity fading in the doped sample, corroborating the theoretical framework and showcasing the potential of aluminum doping for improved Li‐ion battery performance.more » « less
An official website of the United States government
